Funding for research with Azure services

Microsoft Azure is a platform providing various cloud services, such as virtual servers or services with artificial intelligence. Employees of the University of Vienna may use these services provided by the ZID for the purposes of research, subject to a fee at special conditions. More information about Microsoft Azure

In order to support research activities in Azure, the ZID offers financial support for the summer semester 2024. A total of 22,000.00 euros is available. Up to 4,000.00 euros will be awarded per project.

Projects with one of the following characteristics will be prioritised when the funding is awarded:

  • they use Azure services for which the ZID does not offer alternative IT services
  • they work with hybrid approaches (combined use of Azure services with local infrastructure)

Funded research projects

Funding amount 4,000.00 Euro

/

  • Marina Dütsch | FLEXWEB

    Organisational unit: Department of Meteorology and Geophysics

    Abstract (in German):

    Flexpart (FLEXible PARTicle dispersion model) ist ein numerisches Modell, das die Ausbreitung von Gasen und Aerosolen in der Atmosphäre simuliert. Das Modell wird am Institut für Meteorologie und Geophysik weiterentwickelt, und kommt in verschiedenen internationalen und nationalen Forschungsprojekten zum Einsatz. Einige Anwendungsfälle sind z.B. die Bestimmung von Treibhausgas-Emissionen oder Transport von Mikroplastik, sowie Ausbreitungsrechnungen bei nuklearen Störfällen (z.B. CTBTO).

    Damit Flexpart verwendet werden kann, muss es auf einem (Super-)computer installiert und ausgeführt werden. Das ist allerdings mit Hürden verbunden, denn einerseits haben nicht alle Wissenschaftler*innen Zugang zu einem Supercomputer, und andererseits gibt es bei der Installation oder Ausführung oft technische Probleme. In diesem Projekt wollen wir deshalb ein Flexpart Web Service (FLEXWEB) entwickeln, bei dem Flexpart über eine Webseite laufen gelassen werden kann.

    Das Projekt soll ein Testprojekt für ein späteres operationelles Service sein. Flexpart soll mit Hilfe eines Kubernetes Clusters in der Cloud Trajektorien berechnen und den Usern diese Ergebnisse leicht zugänglich machen. Sobald die Simulation fertig ist, sollen die Output-Dateien zum Download bereitgestellt und graphisch dargestellt werden. Damit hoffen wir, den Zugang zu Flexpart für Wissenschaftler*innen weltweit zu vereinfachen.

    Flexpart Entwicklung an der Universität Wien

  • Wolfgang Klas | FactCheck

    Organisational unit: Multimedia Information Systems research group, Faculty of Computer Science

    Abstract:

    FactCheck is an internal research project of the Research Group Multimedia Information Systems, Faculty of Computer Science, that aims to compare and signal conflicts in information available on the Web. This information, which may be available in textual form (e.g., paragraphs in an HTML document) or multimedia form (e.g., news segments in video form), shall be extracted using a combination of approaches from the Semantic Web (e.g., structured data) and state-of-the-art AI technologies and concepts (e.g., named entity recognition or entity linking). The comparison processes for this information will be partially driven by human intelligence and human feedback, which is why approaches for user identities and user management (e.g., Azure Entra ID) will also be investigated. For the deployment of the FactCheck prototype(s), a hybrid approach is considered, which allows for the use of both scalable Azure services (e.g., cognitive services like AI Video Indexer and user management) as well as available on-premises infrastructure (e.g., VMs or databases) at the University of Vienna to achieve suitable tradeoffs in terms of security, privacy, and costs. To keep the deployment highly flexible and modular, parts of this deployment may be containerized, thus simplifying deployment on both Azure and local infrastructure. 

  • Oliver Wieder | Revolutionizing Olfactory Perception Mapping: A Contrastive Learning Graph Neural Network Approach

    Organisational unit: Department of Pharmaceutical Sciences

    Abstract:

    This project proposes a groundbreaking approach to understanding olfactory perceptions by developing a novel computational model that maps chemical structures to olfactory characteristics. Leveraging the advanced techniques of contrastive learning and graph neural networks (GNNs), the project aims to overcome the limitations of current olfactory perception studies, which predominantly rely on subjective human olfactory tests. The core objective is to create a GNN model that accurately represents the complex geometries and properties of small molecules in an embedding space. This space will then be used to fine-tune an odor classifier, significantly enhancing its predictive accuracy. A key innovation of this project is the integration of attention mechanisms to elucidate the role of functional groups in odor perception, a facet largely unexplored in existing research. A significant outcome of this project will be the development of an interactive online dashboard. This platform will enable industry professionals and researchers to visualize and interact with the olfactory map, inputting their compounds and receiving insights into their olfactory characteristics. This tool is expected to have substantial applications in various industries, particularly in the development of products like mosquito repellants. Backed by promising literature in the fields of contrastive learning of small molecules and deep-learning approaches to odor mapping, this project stands on the cusp of a significant breakthrough in olfactory science. It promises not only to advance our fundamental understanding of how chemical structures translate into olfactory experiences but also to transform industries that rely on these insights.

Funding amount 2,000.00 Euro

/

  • Marina Dütsch | FLEXWEB

    Organisational unit: Department of Meteorology and Geophysics

    Abstract (in German):

    Flexpart (FLEXible PARTicle dispersion model) ist ein numerisches Modell, das die Ausbreitung von Gasen und Aerosolen in der Atmosphäre simuliert. Das Modell wird am Institut für Meteorologie und Geophysik weiterentwickelt, und kommt in verschiedenen internationalen und nationalen Forschungsprojekten zum Einsatz. Einige Anwendungsfälle sind z.B. die Bestimmung von Treibhausgas-Emissionen oder Transport von Mikroplastik, sowie Ausbreitungsrechnungen bei nuklearen Störfällen (z.B. CTBTO).

    Damit Flexpart verwendet werden kann, muss es auf einem (Super-)computer installiert und ausgeführt werden. Das ist allerdings mit Hürden verbunden, denn einerseits haben nicht alle Wissenschaftler*innen Zugang zu einem Supercomputer, und andererseits gibt es bei der Installation oder Ausführung oft technische Probleme. In diesem Projekt wollen wir deshalb ein Flexpart Web Service (FLEXWEB) entwickeln, bei dem Flexpart über eine Webseite laufen gelassen werden kann.

    Das Projekt soll ein Testprojekt für ein späteres operationelles Service sein. Flexpart soll mit Hilfe eines Kubernetes Clusters in der Cloud Trajektorien berechnen und den Usern diese Ergebnisse leicht zugänglich machen. Sobald die Simulation fertig ist, sollen die Output-Dateien zum Download bereitgestellt und graphisch dargestellt werden. Damit hoffen wir, den Zugang zu Flexpart für Wissenschaftler*innen weltweit zu vereinfachen.

    Flexpart Entwicklung an der Universität Wien

  • Wolfgang Klas | FactCheck

    Organisational unit: Multimedia Information Systems research group, Faculty of Computer Science

    Abstract:

    FactCheck is an internal research project of the Research Group Multimedia Information Systems, Faculty of Computer Science, that aims to compare and signal conflicts in information available on the Web. This information, which may be available in textual form (e.g., paragraphs in an HTML document) or multimedia form (e.g., news segments in video form), shall be extracted using a combination of approaches from the Semantic Web (e.g., structured data) and state-of-the-art AI technologies and concepts (e.g., named entity recognition or entity linking). The comparison processes for this information will be partially driven by human intelligence and human feedback, which is why approaches for user identities and user management (e.g., Azure Entra ID) will also be investigated. For the deployment of the FactCheck prototype(s), a hybrid approach is considered, which allows for the use of both scalable Azure services (e.g., cognitive services like AI Video Indexer and user management) as well as available on-premises infrastructure (e.g., VMs or databases) at the University of Vienna to achieve suitable tradeoffs in terms of security, privacy, and costs. To keep the deployment highly flexible and modular, parts of this deployment may be containerized, thus simplifying deployment on both Azure and local infrastructure. 

  • Oliver Wieder | Revolutionizing Olfactory Perception Mapping: A Contrastive Learning Graph Neural Network Approach

    Organisational unit: Department of Pharmaceutical Sciences

    Abstract:

    This project proposes a groundbreaking approach to understanding olfactory perceptions by developing a novel computational model that maps chemical structures to olfactory characteristics. Leveraging the advanced techniques of contrastive learning and graph neural networks (GNNs), the project aims to overcome the limitations of current olfactory perception studies, which predominantly rely on subjective human olfactory tests. The core objective is to create a GNN model that accurately represents the complex geometries and properties of small molecules in an embedding space. This space will then be used to fine-tune an odor classifier, significantly enhancing its predictive accuracy. A key innovation of this project is the integration of attention mechanisms to elucidate the role of functional groups in odor perception, a facet largely unexplored in existing research. A significant outcome of this project will be the development of an interactive online dashboard. This platform will enable industry professionals and researchers to visualize and interact with the olfactory map, inputting their compounds and receiving insights into their olfactory characteristics. This tool is expected to have substantial applications in various industries, particularly in the development of products like mosquito repellants. Backed by promising literature in the fields of contrastive learning of small molecules and deep-learning approaches to odor mapping, this project stands on the cusp of a significant breakthrough in olfactory science. It promises not only to advance our fundamental understanding of how chemical structures translate into olfactory experiences but also to transform industries that rely on these insights.

Application requirements

The applicant must:

  • have a current employment with the University of Vienna and an active u:account
  • be entitled to order Microsoft 365 via the self-service portal
  • accept the Privacy Policy and Terms of Use for Microsoft Azure, see servicedesk form Microsoft Azure bestellen (ordering Microsoft Azure, in German)

Conditions of funding

  • The team Coordination Digital Transformation of the ZID decides on funding. If necessary, it consults with peer reviewers.
  • The amount of funding granted per project will be deducted monthly from the costs incurred for Azure over the period of use until 31.07.2024 on a pro rata basis.
  • Costs that exceed the granted funding amount or are incurred after the end of the funding must be covered by a cost centre available for the project.
  • The ZID is responsible for setting up the project environment in Azure, for onboarding and assigning user authorisations. Support for the technical implementation of the project is not offered.
  • Personnel resources are explicitly not funded.
  • After the end of the funding period, the Azure environment provided and the resources contained therein remain available to users. Subsequent use of the services is possible and desired.

Timetable

  • 01.11.– 31.12.2023: Application for funding
  • 01.–14.01.2024: Internal review of applications and possible queries
  • From 16.01.2024: Announcement of funded projects by e-mail
  • 17.01.–31.01.2024: Setup of Azure environments by the ZID, onboarding of users
  • 01.02.–31.07.2024: Implementation of the projects
  • 01.08.–30.09.2024: Submission of project reports

Applying for funding

The application deadline for funding has expired.

Contact

If you have any questions about funding, please use the Servicedesk form Anfrage zu Microsoft Azure (enquiry about Azure, in German).